
NEUTRON REACTIONS

Neutron Intensity (I) and Flux (ϕ)

When the neutrons are monodirectional, we speak of the neutron intensity (*I*), but when the neutrons become multi-directional, we change the nomenclature to $flux(\phi)$

$$I = n v \qquad \phi = n v \tag{1}$$

where n is number of neutrons/cm³ and v is the neutron speed. The beam intensity and flux (ϕ) have units of neutrons/cm²·sec, which is the number of neutrons crossing through some arbitrary cross-sectional unit area per unit time.

Fluence (Φ)

Fluence is the time-integrated flux (with units of neutrons/cm²):

$$\Phi = \int \phi(t) \, dt \tag{2}$$

The unit "nv" is an outdated measure of flux in n/cm²·sec, and similarly, the unit "nvt" is an archaic measure of fluence in n/cm²

Reaction (Interaction) Rate

Knowledge of the neutron flux (ϕ) and the material cross sections allows us to compute the rate of interactions. The interaction or reaction rate, RR [reactions/cm³·sec], is based on total number of neutron-nucleus interactions

$$RR = (n \ v) \ N \ \sigma = \phi \ (N \ \sigma) = \phi \ \Sigma \tag{3}$$

The reaction rate for various types of interactions is found from the appropriate cross section type

total reaction rate =
$$\Sigma_t \phi$$

fission rate = $\Sigma_f \phi$ (4)
absorption rate = $\Sigma_a \phi$ $\Sigma_a \phi \ge \Sigma_f \phi$

The reaction rate in units of reactions/second can be computed by multiplying RR by the material volume. In similar fashion, the total number of reactions can be determined by using the neutron fluence (Φ) , rather than the flux:

Number of reactions =
$$\Sigma \Phi$$
 (5)

Neutron Attenuation through a target

Because neutrons are uncharged, they have the ability to move long distances through matter. Neutron attenuation calculations are very similar to those for photons:

EEE460-Handout K.E. Holbert

$$\frac{d\phi}{dx} = -\Sigma_t \ \phi(x) \qquad \Rightarrow \qquad \phi(x) = \phi(0) \ e^{-\Sigma_t x} \tag{6}$$

Fission Rate

The fission rate is

Fission Rate =
$$\frac{P_{Rx}}{E_R} = V_{Fuel} \sum_{f}^{Fuel} \phi = V(N\sigma_f)(nv)$$
 (7)

Example: Determine the conversion factor E_R above between fission energy and thermal power.

Solution: Using 200 MeV per fission as the basis

$$E_R = \left(200 \frac{\text{MeV}}{\text{fission}}\right) \left(\frac{1.602 \times 10^{-13} \text{ J}}{\text{MeV}}\right) \left(\frac{\text{W} \cdot \text{sec}}{\text{J}}\right) = 3.20 \times 10^{-11} \frac{\text{W} \cdot \text{sec}}{\text{fission}}$$

$$\frac{1}{E_R} = \left(\frac{\text{fission}}{3.20 \times 10^{-11} \text{ W} \cdot \text{sec}}\right) \left(\frac{10^6 \text{ W}}{\text{MW}}\right) \left(\frac{3600 \text{ sec}}{\text{hr}}\right) \left(\frac{24 \text{ hr}}{\text{day}}\right) = 2.70 \times 10^{21} \frac{\text{fissions}}{\text{MW} \cdot \text{day}}$$

Reactor Thermal Power (P_{Rx})

The reactor thermal power can be computed from the fission rate

$$P_{Rx} = (Fission \ Rate)(Energy \ per \ Fission) = E_R \ V_{Fuel} \ \sum_f \phi$$
 (8)

Burnup Rate

The *burnup rate* represents the fuel mass **fissioned** per unit time [g/day].

Burnup Rate = (Fission Rate)
$$\frac{M_{Fissile}}{N_{Av}} = \frac{P_{Rx} M_{Fissile}}{E_R N_{Av}} = m_{Fissile} \overline{\sigma}_{f,th} \phi_T$$
 (9)

Example: Determine the burnup rate for U-235 to produce 1 MW.

Solution: Using the above formula, the burnup rate is

$$\frac{P M_{\text{U-235}}}{E_R N_{Av}} = \frac{(1 \text{ MW})(235 \text{ g/mol})(2.70 \times 10^{21} \text{ fissions/MW} \cdot \text{day})}{(6.022 \times 10^{23} \text{ atoms/mol})} = 1.05 \text{ g/MW} \cdot \text{day}$$

Consumption Rate

The *consumption rate* is the fuel mass converted per unit time [g/day]. The consumption rate includes all absorptions whereas the burnup rate includes only those atoms that are fissioned.

Consumption Rate = (Burnup Rate)
$$\frac{\sigma_a}{\sigma_f}$$
 = (Burnup Rate) $(1 + \alpha)$ (10)

Example: Determine the consumption rate for U-235 to produce 1 MW.

Solution: For U-235, the thermal neutron absorption and fission cross sections are 680.8 b and 582.2 b, respectively. Using the U-235 burnup rate from the previous example and the above formula, yields a consumption rate of

$$\left(1.05 \frac{g}{MW \cdot day}\right) \left(\frac{680.8 \text{ b}}{582.2 \text{ b}}\right) = 1.23 \text{ g/MW} \cdot day$$

EEE460-Handout K.E. Holbert