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RADIOACTIVE DECAY 
 
 
Radioactive materials may either originate from natural sources or be created through technological 
processes.  Naturally radioactive materials include carbon-14, potassium-40, and thorium and uranium 
isotopes and their progeny.  Neutron transmutation of stable isotopes into radioisotopes is a method of 
artificially creating radioactive material.  Of interest to the study of soft errors in circuits are the heavy decay 
chains of uranium and thorium.  To begin our study of radioactivity, we first examine simple radioactive 
decay and we define terms such as half-life, decay constant, and activity. 
 
Basic Balance Equation 
The basic balance equation is a useful starting point for many analyses: 

 Rate of Change = Production (Inflow) – Losses (Outflow) 

 
Simple Decay Chain 
For a simple radioactive decay chain, the parent radionuclide decays to a stable product.  Let N(t) represent 
the parent radionuclide at time t, where N could be in units of total atoms (n) or atom density (N).  We 
assume in this discussion that no production of the radionuclide occurs after t = 0, so there is an initial 
number of atoms equal to N(0).  These radioactive atoms then decay according the decay constant (λ), 
which is a probability per unit time that an individual atom decays, and which can be expressed in terms of 
the half-life (t½) of the substance, ½)2ln( t=λ .  The decay rate is a nuclear property independent of (1) 
temperature, (2) pressure, (3) chemical form of the isotope, and (4) physical state of the substance.  Using 
the basic balance equation above, a first-order differential equation describing N(t) is established 

 )(tN
dt
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λ−=  (1) 

Laplace transforming the differential equation yields: 
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The above expression is algebraically manipulated to isolate the variable of interest, N(s): 
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Finally, the inverse Laplace transform is taken to determine the time dependent concentration of the parent 
radionuclide for t ≥ 0: 

 ( ) ½/
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where the decay constant (λ) and half-life of the radionuclide (t½) are related by 
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The average (or mean) life of a radionuclide is 
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The buildup of a stable decay (daughter) product, which is not initially present, would follow 
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 ( )teN λ−−1)0(  (7) 

 
Activity 
The activity is the number of decays or disintegrations per unit time [Becquerels (Bq) or Curies (Ci)] 

 tentntA λλλ −=≡ )0()()(  (8) 

where a Becquerel is the SI unit defined as one transformation per second, and 1 Ci = 3.7×1010 Bq.  Figure 1 
shows the activity of a (parent) radionuclide where the time scale (ordinate) is expressed in term of the 
number of half-lives of the radionuclide and the abscissa is measured in comparison to the initial activity 
(A0).  The y-axis could equivalently be stated in terms of N(t) or n(t) as measured in reference to N0 and n0, 
respectively. 
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Figure 1.  Activity of a radionuclide undergoing simple decay.  The radionuclide activity is normalized to 

the initial activity, A(0), and time is in terms of the number of half-lives. 
 
 
Example: 
Given 1 gram-mole of potassium (K) today, compute: (a) the activity today in Bq, and (b) the number of 
K-40 atoms one billion years from now. 
Solution: 
A gram-mole of any element is 6.022×1023 atoms, and in this case equals the number of potassium (K) 
atoms.  Natural potassium is composed of two stable isotopes, K-39 and K-41, and a radioisotope, K-40, 
which is only 0.0117 atom percent.  Hence, today there are 

atoms40-K107.046atoms)K10022.6)(000117.0( 1923
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atoms40-K
40K ×=×=−n  

The half-life of K-40 is 1.277×109 years, such that the decay constant is 
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(a) The activity of the K-40 today is 
Bq1213)atoms10046.7)(10721.1( 19
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00 =××== −nA λ  
(b) The number of K-40 atoms in 109 years may be found using Eq. (4): 
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Specific Activity 
The specific activity is the activity per unit mass (m) of the radionuclide [Bq/g or Ci/g] 
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where M is the atomic weight.  This expression shows that the specific activity is independent of the actual 
mass and is a fixed value (i.e., time independent) for a particular radionuclide. 
 
Example: 
Compute the specific activity of cobalt-60. 
Solution: 
The half-life of Co-60 is 5.27 years.  The specific activity is computed using Eq. (9): 
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Effective Half-life 
The effective half-life takes into account both the radioactive decay and the biological removal of a 
radioisotope.  It is the combination of the radioactive half-life and the biological half-life (like resistors in a 
parallel circuit). 
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Example: 
Iodine-131 has a radioactive half-life of 8 days and a biological half-life of 120 days as it tends to collect 
in the thyroid.  What is the effective half-life of I-131? 
Solution: 
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Table I.  Natural Heavy Decay Chains 
 

Series Decay Chain Parent Parent Half-life (yrs) Stable End Product 
(4n+0) Thorium Th232

90  1.405 × 1010 Pb208
82  

(4n+1) Neptunium Np237
93  2.14 × 106 Bi209

83  

(4n+2) Uranium U238
92  4.468 × 109 Pb206

82  

(4n+3) Actinium U235
92  7.038 × 108 Pb207

82  
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Heavy Decay Chains 
The natural heavy decay chains consist of four series of radionuclides as summarized in Table I.  The 
(4n+b) expression describes the mass number of any member in the series.  The numeral "4" occurs because 
during an alpha transition there is a change in the nucleus of four mass units.  The values of "b" (b=0,1,2,3) 
indicate the number of neutron and/or proton departures from the thorium series (4n) where n is an integer.  
Hence, in the thorium series the parent and each of the daughter products has a mass number perfectly 
divisible by 4.  Note that the series with a parent half-life of t½>1010 yrs have decayed very little while those 
with a half-life of t½<108 yrs are gone.  The series still present are detailed in Figure 3.  These heavy decay 
chains undergo compound (serial) and complex (branching) decay schemes, which are explored next. 
 
Compound Decay (n1→ n2→ n3) 
The earlier equation for simple decay can be extended to the case in which a radionuclide (n1) decays to a 
daughter product (n2) that is also radioactive, and which subsequently decays to a stable end product (n3).  
The differential equation and time domain solution for n1 are the same as the simple decay situation above. 

 tentnsnnsnstn
dt
nd
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The differential equation for n2, however, includes the production of n2 from the decay of n1 

 )()( 2211
2 tntn

dt
nd

λλ −=  (12) 

The solution to this differential equation may also be accomplished with Laplace transforms, and 
substituting for n1(s) using an expression extracted from Eq. (11) above: 
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Inverse Laplace transforming this expression yields 
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The differential equation for the end product (granddaughter) n3 consists only of a production term since 
there are no losses because the end product is stable. 
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The solution may be found by integrating this expression and substituting Eq. (14) 
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Alternatively, the solution may be determined using Laplace transforms 
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Compound Radioactive Decay 
There are three cases of interest for compound decay. 

1. The non-equilibrium or general case (λ1>λ2) requires the use of the full equation (i.e., Eq. (14)) for 
n2(t).  For 0)0(2 =n , the full expression is reduced to 
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The activities of the parent and daughter are graphed below where it can be seen that eventually the 
total activity is dominated by the daughter’s activity, that is 

 1½,221 7~for ttAAA >≅+  (19) 
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2. Secular equilibrium occurs when the parent is very long-lived compared to the daughter, λ1<<λ2.  
After about seven half-lives of the daughter, the parent’s and daughter’s activities are equal as shown 
in the equations and figure below for 0)0(2 =n  
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Secular Equilibrium Compound Decay
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3. Transient equilibrium occurs when the parent is long-lived (λ1<λ2) since eventually all the activities 
decay with the half-life of the parent as illustrated in the equations and figure below for 0)0(2 =n  
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Transient Equilibrium Compound Decay

0.0

0.5

1.0

1.5

0 2 4 6 8 10

Time (no. of half-lives of daughter, A2)

R
el

at
iv

e 
A

ct
iv

ity

A1(t)+A2(t)

A2(t)

A1(t)

 
 
Bateman Equation (n1→ n2→ n3→ …→ ni→) 

Bateman developed a general equation for serial decay chains*, such as the heavy decay chains of 
Th-232, U-235, and U-238.  Assuming that the concentrations of all the daughters are initially zero (i.e., 

0)0( =in  for i>1), the concentration of the i-th radionuclide can be determined from 

 ∑
∏=

≠
=

−

−

−
=

i

j
i

jk
k

jk

t

ii

jentn
1

1

1121

)(
)0()(

λλ
λλλ

λ

L  (22) 

 
Example:  Natural uranium is composed by atomic percent of 99.2745% U-238, 0.72% U-235, and 0.0055% 
U-234.  Confirm the relative fractions of U-238 and U-234, that is, verify 

050,18)0055.0/()2745.99(/ 234U238U ==−− nn  
Solution:  We note that secular equilibrium is eventually established between U-238 and its great-
grandchild, U-234, such that their activities are equal: 
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From Figure 3, the half-lives of U-238 and U-234 are 4.468×109 yrs and 2.445×105 yrs, respectively.  
Substituting these values into the above expression yields: 
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Since the fraction of U-234 is only known to two significant figures, the relative fractions are confirmed. 

                                                      
* H. Bateman, “The solution of a system of differential equations occurring in the theory of radio-active 

transformations,” Proc. Cambridge Phil. Soc., 15, p. 423 (1910). 
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Example:  An impurity level of 5 ppm of Th-232 is present in the ceramic packaging material to be used as a 
direct top covering (lid) for an integrated circuit (IC), as shown below.  The ceramic has a density of 4.7 
g/cm3 and an effective atomic weight of 43.5 amu.  Determine the maximum alpha flux into the IC. 

 
Solution:  
The atomic density of the ceramic is 
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The thorium concentration is 
317226
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The activity of the thorium is 
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We must find the depth into the lid from which the alphas will have sufficient energy to escape the lid, that 
is, we determine an active region of the lid in terms of an alpha range into the lid.  We find that Th-232 
emits alphas at two different energies: 4.016 MeV (77%) and 3.957 MeV (23%).  The range of these ~ 4 
MeV alphas in air is  

cm34.262.2)MeV 4)(24.1(62.224.1 =−=−= αERair  
The corresponding range in the ceramic lid is computed using the Bragg-Kleeman rule 
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Assuming a one-dimensional geometry, only half the alphas at the most move toward the IC such that the 
maximum alpha emission flux into the IC is 
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Of course, a thinner lid than 7.55 µm would emit fewer alphas.  The above analysis does not include any of 
the alpha emissions from progeny of Th-232. 
 
Complex Radioactive Decay 
A radionuclide may also decay by multiple means, for example, by both α and β decay.  As examples, 
Figure 3 shows two such complex or branching decay schemes: (1) in the Th-232 series, Bi-212 decays to 
either Po-212 or Tl-208, and (2) in the U-235 series, Ac-227 decays to Th-227 or Fr-223  

 
Figure 2.  Complex decay scheme in which radionuclide A decays to either B or C. 
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Suppose that radionuclide A decays proportionally to B and C according to fractions fB and fC, respectively, 
as depicted in Figure 2.  Since λA represents the decay probability for A, then the probability of decay from 
A to B is ABf λλ =1 , and likewise to C is ACf λλ =2 .  The overall decay probability λA is the sum of the 
individual probabilities, that is, 21 λλλ +=A  (i.e., a joint probability from the union of the two decay 
paths).  The balance equation for radionuclide A is therefore 

 )()()( 21 tntn
dt
nd

AAA
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The activity of A can be shown to be 

 
t

AA
t

A
t

AA

AAAA

eneAeAtA

tAtAtntntA

A )()(

2121

2121 )0()0()0()(

and
)()()()()()(

λλλλλ λ

λλλ

+−+−− ===

+=+==
 (24) 

If B and C are stable, then intuitively from Eq. (7): 
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Example:  The decay of Bi-212 involves a complex decay scheme whose daughters both decay to the same 
grandchild (stable Pb-208) as illustrated below.  Determine whether the time to decay from Bi-212 to Pb-
208 differs based on the decay branch taken. 
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Solution:  We begin by finding the decay constant of Bi-212 

 /min01145.0)min 55.60/()2ln(/)2ln( ½212-Bi === tλ  
Next, determine the decay constants associated with the initial two (α and β) decay branches 
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From Figure 3, the half-lives of Po-212 and Tl-208 are 305 ns and 3.07 min, respectively.  Using Eq. (6), 
the corresponding average lives ( )2ln(//1 ½t== λτ ) of the radionuclides are 
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This implies that the average time in the upper (Bi-212→Po-212→Pb-208) branch is shorter than in the Bi-
212→Tl-208→Pb-208 path.  Noteworthy is that both of these paths represent secular equilibrium behavior. 
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Figure 3.  Thorium-232, Uranium-235 and U-238 decay chains referenced to atomic (left) and neutron (top) numbers. 


