RADIOACTIVE DECAY

Radioactive materials may either originate from natural sources or be created through technological
processes. Naturally radioactive materials include carbon-14, potassium-40, and thorium and uranium
isotopes and their progeny. Neutron transmutation of stable isotopes into radioisotopes is a method of
artificially creating radioactive material. Of interest to the study of soft errors in circuits are the heavy decay
chains of uranium and thorium. To begin our study of radioactivity, we first examine simple radioactive
decay and we define terms such as half-life, decay constant, and activity.

Basic Balance Equation
The basic balance equation is a useful starting point for many analyses:

Rate of Change = Production (Inflow) — Losses (Outflow)

Simple Decay Chain

For a simple radioactive decay chain, the parent radionuclide decays to a stable product. Let N(¢) represent
the parent radionuclide at time ¢, where N could be in units of total atoms () or atom density (V). We
assume in this discussion that no production of the radionuclide occurs after ¢ = 0, so there is an initial
number of atoms equal to N(0). These radioactive atoms then decay according the decay constant (A.),
which is a probability per unit time that an individual atom decays, and which can be expressed in terms of
the half-life (#,,) of the substance, A =1n(2)/t,, . The decay rate is a nuclear property independent of (1)
temperature, (2) pressure, (3) chemical form of the isotope, and (4) physical state of the substance. Using
the basic balance equation above, a first-order differential equation describing N(?) is established

N __avw 1)
dt
Laplace transforming the differential equation yields:

s N(s) = N(0) = -2 N(s) ©)

The above expression is algebraically manipulated to isolate the variable of interest, N(s):
(s +A)N(s)=N(0)
N - VO G
(s+4)

Finally, the inverse Laplace transform is taken to determine the time dependent concentration of the parent
radionuclide for # > 0:

— t/t
N@=N(©) e =N©) (1) 4)
where the decay constant (A) and half-life of the radionuclide (#,,) are related by
In(2
ty =22 ®)
The average (or mean) life of a radionuclide is
1 7 1
r=—— [t AN(@)dt=— (6)
N(0) A

The buildup of a stable decay (daughter) product, which is not initially present, would follow
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N(0) (1 —e M ) (7)

Activity
The activity is the number of decays or disintegrations per unit time [Becquerels (Bq) or Curies (Ci)]

A() = An(t) = An(0)e (8)

where a Becquerel is the SI unit defined as one transformation per second, and 1 Ci = 3.7x10" Bq. Figure 1
shows the activity of a (parent) radionuclide where the time scale (ordinate) is expressed in term of the
number of half-lives of the radionuclide and the abscissa is measured in comparison to the initial activity
(Ao). The y-axis could equivalently be stated in terms of N(¢) or n(¢) as measured in reference to Ny and 7y,
respectively.
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Figure 1. Activity of a radionuclide undergoing simple decay. The radionuclide activity is normalized to
the initial activity, 4(0), and time is in terms of the number of half-lives.

Example:

Given 1 gram-mole of potassium (K) today, compute: (a) the activity today in Bq, and () the number of
K-40 atoms one billion years from now.

Solution:

A gram-mole of any element is 6.022x10* atoms, and in this case equals the number of potassium (K)
atoms. Natural potassium is composed of two stable isotopes, K-39 and K-41, and a radioisotope, K-40,
which is only 0.0117 atom percent. Hence, today there are

n g0 = (0.000117 £2220M 6 027 %107 K atoms) = 7.046 x 10" K - 40 atoms

atoms

The half-life of K-40 is 1.277x10° years, such that the decay constant is

P In(2) _ In(2) lyr lday 1hr 1 721x10-17 L
ty,  1.277x10° yr\ 365day )\ 24 hr )\ 3600sec sec

(a) The activity of the K-40 today is
Ay =Any=(1.721x10""" L1)(7.046x 10" atoms) =1213 Bq
(b) The number of K-40 atoms in 10° years may be found using Eq. (4):

RadioactiveDecay © 2006, K.E. Holbert Page 2 of 9




9 « 9
n(t) =no (L) = (7.046x10" atoms)(L) 147 4,095 x10' atoms

Specific Activity
The specific activity is the activity per unit mass (m) of the radionuclide [Bg/g or Ci/g]
A _An_AmN, AN,

SA=—=—= = 9)
m m m M M

where M is the atomic weight. This expression shows that the specific activity is independent of the actual
mass and is a fixed value (i.e., time independent) for a particular radionuclide.

Example:

Compute the specific activity of cobalt-60.

Solution:

The half-life of Co-60 is 5.27 years. The specific activity is computed using Eq. (9):

23
Sy g0 = In(2) (6.022x10°° atoms/g - mole)( 1yr lday lhr _419x10" Bq
(5.27 yrs) (60 g/g - mole) 365day )\ 24 hr )\ 3600sec g
Effective Half-life

The effective half-life takes into account both the radioactive decay and the biological removal of a
radioisotope. It is the combination of the radioactive half-life and the biological half-life (like resistors in a
parallel circuit).

Aefr = Araa + Abio

_In(2) by raa Do (10)
byeff = F

eff tl/z,rad + t‘/z,bio

Example:
Iodine-131 has a radioactive half-life of 8 days and a biological half-life of 120 days as it tends to collect
in the thyroid. What is the effective half-life of I-131?
Solution:
(8 days)(120 days)
t‘/z,eﬂ =
(8 +120 days)

=7.5 days

Table I. Natural Heavy Decay Chains

Series | Decay Chain | Parent | Parent Half-life (yrs) | Stable End Product
. 232 10 208

(4n+0) Thorium o0 Th 1.405 x 10 3, Pb

(4n+1) | Neptunium | ZINp 2.14 x 10° 2 Bi

(4n+2) Uranium 28U 4.468 x 10° 2% Pb

(4n+3) |  Actinium HU 7.038 x 10° 9 Pb
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Heavy Decay Chains

The natural heavy decay chains consist of four series of radionuclides as summarized in Table I. The
(4n+b) expression describes the mass number of any member in the series. The numeral "4" occurs because
during an alpha transition there is a change in the nucleus of four mass units. The values of "b" (6=0,1,2,3)
indicate the number of neutron and/or proton departures from the thorium series (4n) where # is an integer.
Hence, in the thorium series the parent and each of the daughter products has a mass number perfectly
divisible by 4. Note that the series with a parent half-life of #,,>10'° yrs have decayed very little while those
with a half-life of #,,<10® yrs are gone. The series still present are detailed in Figure 3. These heavy decay
chains undergo compound (serial) and complex (branching) decay schemes, which are explored next.

Compound Decay (1n;—> ny—> n3)

The earlier equation for simple decay can be extended to the case in which a radionuclide (r,) decays to a
daughter product (n,) that is also radioactive, and which subsequently decays to a stable end product (n3).
The differential equation and time domain solution for 7, are the same as the simple decay situation above.

dn,

o “m(@) = sm(s)-m0)=-An(s) = n(t)=n0)e " (11
The differential equation for n,, however, includes the production of n, from the decay of »,
dn
— = AmO= A m (o) (12)

The solution to this differential equation may also be accomplished with Laplace transforms, and
substituting for n,(s) using an expression extracted from Eq. (11) above:

sny(s) —ny(0) =4, ny(s)— Ay ny ()
n,(0) + A4y ny ()

ny(s)= 13
2(5) 1Ay (13)
_ @ A4Am(0)
(s+4,) (+A4)(s+4,)
Inverse Laplace transforming this expression yields
A
ny(t) = ny (0) e ! +w[e*ﬂ —e ! (14)

A =4
The differential equation for the end product (granddaughter) 75 consists only of a production term since

there are no losses because the end product is stable.

dn3
—=1 t 15
= Ay () (15)

The solution may be found by integrating this expression and substituting Eq. (14)

ny(t) =13 (0)+ [} 2y ny () de

16)
A A (
=n30)+ny () [l —e ™2 )+ 1 (0) | 1+ —2—™h! - T1L__o7h!
L@+ m () - ) m[ T
Alternatively, the solution may be determined using Laplace transforms

dn3

7=42 ny(t) = sn3(s)—n3(0)=4, ny(s) (17)
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Compound Radioactive Decay
There are three cases of interest for compound decay.
1. The non-equilibrium or general case (A;>\,) requires the use of the full equation (i.e., Eq. (14)) for
ny(f). For n,(0) =0, the full expression is reduced to

n(0) 4 [e—/llt _ ot
/12 - /11

ny(t) =

(18)

The activities of the parent and daughter are graphed below where it can be seen that eventually the
total activity is dominated by the daughter’s activity, that is

A+ A4, =4, fort>7t,, (19)

Non-Equilibrium Compound Decay

1.0
> 0.8 4\ Al(H)+A2(t)
£ 06 \ )
< — — AL
2 0.4 - \
g AN
o
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¢ ~ —
0.0 : = .
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Time (no. of half-lives of parent, A )

2. Secular equilibrium occurs when the parent is very long-lived compared to the daughter, A;<<A,.
After about seven half-lives of the daughter, the parent’s and daughter’s activities are equal as shown
in the equations and figure below for 7, (0)=0

nz(t)zm[l—efﬂ?t]

A (20)
Az(l‘)Eiz nz(l‘)=/11 n1(0)=A1(0) fort;7t1/2’2

Secular Equilibrium Compound Decay

1.0 —
0.8 - ~

AL(t)

0.6 | Vs —_ — A2(1)
04 /
02!/

0.0

Relative Activity

0 2 4 6 8 10
Time (no. of half-lives of daughter, A,)
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3. Transient equilibrium occurs when the parent is long-lived (A;<A;) since eventually all the activities
decay with the half-life of the parent as illustrated in the equations and figure below for 7,(0)=0

n2 (Z) ~ nl (O) ﬂ‘l e*ﬂl t — /11 nl (t)
Ay =4 Ay — A4 @
A5 ()= Ay ny (1) = 4,(2) & fort>7t,,
Ay =4

Transient Equilibrium Compound Decay

1.5
AL(t)+A2(t)
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Bateman Equation (n,— ny— n3— ...— n—>)
Bateman developed a general equation for serial decay chains’, such as the heavy decay chains of
Th-232, U-235, and U-238. Assuming that the concentrations of all the daughters are initially zero (i.e.,

n;(0)=0 for i>1), the concentration of the i-th radionuclide can be determined from

i -4t
ni(0)= 2 A2y m (0) Y (22)
AT -4
k=1

k#j

Example: Natural uranium is composed by atomic percent of 99.2745% U-238, 0.72% U-235, and 0.0055%
U-234. Confirm the relative fractions of U-238 and U-234, that is, verify
nU_238 /nU_234 = (992745) /(00055) = 18,050
Solution: We note that secular equilibrium is eventually established between U-238 and its great-
grandchild, U-234, such that their activities are equal:
Ay.azs = Ay-aza
(Am)y.azg =(An)y.ass

From Figure 3, the half-lives of U-238 and U-234 are 4.468x10° yrs and 2.445x10° yrs, respectively.
Substituting these values into the above expression yields:

nygps | Auosa In(2)/1,, 234 Clbhuoss 4468 x 10% yrs

nuoss  Aumss N2/t uazs fuuas 2.445x10° yrs
Since the fraction of U-234 is only known to two significant figures, the relative fractions are confirmed.

=18,274

*

H. Bateman, “The solution of a system of differential equations occurring in the theory of radio-active
transformations,” Proc. Cambridge Phil. Soc., 15, p. 423 (1910).
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Example: An impurity level of 5 ppm of Th-232 is present in the ceramic packaging material to be used as a
direct top covering (lid) for an integrated circuit (IC), as shown below. The ceramic has a density of 4.7
g/em’ and an effective atomic weight of 43.5 amu. Determine the maximum alpha flux into the IC.

Ceramic Lid

Integrated Circuit

Solution:
The atomic density of the ceramic is
PNy (47 g/em?)(6.022 x10% atoms/g - mole)

Nceramic = M =6.51x 1022 atoms/cm3

43.5 g/g - mole
The thorium concentration is
Ny =(5%x107°) N ogamic = (5x1070)(6.51x10%%) =3.25x10'7 atoms/cm?
The decay constant of Th-232 is
Atha3 = In(2) = ln(2)10 ( Lyr ]( Ld J( Lhr ] =1.564x107"8 /sec
t,  1.405x10" yr\365d 24 hr | 3600s
The activity of the thorium is
Agpry =A N = (1 564x107'8 éX&zs x10"7 ;Tﬂg)z 0.5088 Bg/cm’®

We must find the depth into the lid from which the alphas will have sufficient energy to escape the lid, that
is, we determine an active region of the lid in terms of an alpha range into the lid. We find that Th-232
emits alphas at two different energies: 4.016 MeV (77%) and 3.957 MeV (23%). The range of these ~ 4
MeV alphas in air is

R, =124E, —2.62=(1.24)(4MeV) -2.62=2.34cm

The corresponding range in the ceramic lid is computed using the Bragg-Kleeman rule
04 VM R V435 (
Yo 4.7

Assuming a one-dimensional geometry, only half the alphas at the most move toward the IC such that the
maximum alpha emission flux into the IC is

R=23x1 =(2.3><10_4 2.34 crn) 0.000755 cm =7.55 um

1 alpha/sec
Bq

Of course, a thinner lid than 7.55 um would emit fewer alphas. The above analysis does not include any of

the alpha emissions from progeny of Th-232.

alphas

2

b, :%Ad——[o 6115 )(0 000755 cm)[
cm> cm” -sec

J: 0.00023

Complex Radioactive Decay

A radionuclide may also decay by multiple means, for example, by both o and 3 decay. As examples,
Figure 3 shows two such complex or branching decay schemes: (1) in the Th-232 series, Bi-212 decays to
either Po-212 or T1-208, and (2) in the U-235 series, Ac-227 decays to Th-227 or Fr-223

20
(D
s @

Figure 2. Complex decay scheme in which radionuclide 4 decays to either B or C.
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Suppose that radionuclide 4 decays proportionally to B and C according to fractions fz and fc, respectively,
as depicted in Figure 2. Since A, represents the decay probability for 4, then the probability of decay from

AtoBis A, = f, A,,and likewise to Cis A, = f- A,. The overall decay probability A, is the sum of the

individual probabilities, that is, 4, = A, + 4, (i.e., a joint probability from the union of the two decay
paths). The balance equation for radionuclide A4 is therefore

dn
dt

The activity of 4 can be shown to be
A )= n @) =(h +A)ny ()= A4 (1) + 4, (2)
and (24)
A (0)=A,0)e ™" = 4,0)e” MR =2 0, (0)e AR

= A n () =—(A + Ay)n (1) (23)

If B and C are stable, then intuitively from Eq. (7):

ng(t)=ng(0)+ fp n,(0) (1 - e_ht)

i (25)
ne(®)=nc(0)+ fc "A(O)(l —e At)

Example: The decay of Bi-212 involves a complex decay scheme whose daughters both decay to the same
grandchild (stable Pb-208) as illustrated below. Determine whether the time to decay from Bi-212 to Pb-

208 differs based on the decay branch taken.

— 0/0;)\'\5
MNA y
g 6%’1{1

Solution: We begin by finding the decay constant of Bi-212
Agio1r =In(2)/ ¢, =1n(2)/(60.55 min) = 0.01145 /min
Next, determine the decay constants associated with the initial two (o and ) decay branches
Ap = [fp Agia1r =(0.6407)(0.01145 /min) = 0.00734 /min
Ay = fo ABi-a12 =(0.3593)(0.01145 /min) = 0.00411 /min

From Figure 3, the half-lives of Po-212 and T1-208 are 305 ns and 3.07 min, respectively. Using Eq. (6),
the corresponding average lives (7 =1/ 4 =t,, /In(2) ) of the radionuclides are

Tgi-212,p =1 / ﬂﬂ =1/(0.00734 /min) =136.2 min
Tpoa12 =112 /1n(2)=(305ns)/In(2) = 440 ns
Tgi212.q =1/ 4, =1/(0.00411/min) = 243.3 min
T11-208 =11/2 /1n(2) =(3.07 min) / In(2) = 4.43 min

This implies that the average time in the upper (Bi-212—P0-212—Pb-208) branch is shorter than in the Bi-
212—TI1-208—Pb-208 path. Noteworthy is that both of these paths represent secular equilibrium behavior.

Upper branch:

Lower branch:
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Figure 3. Thorium-232, Uranium-235 and U-238 decay chains referenced to atomic (left) and neutron (top) numbers.
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