TRANSMUTATION

During Irradiation $(t \le t_I)$:

A "target" with nuclei n_1 is placed in a reactor or similar facility and is exposed to a constant flux of particles, such as neutrons. Some of the target nuclides, n_1 , absorb a neutron to form a radionuclide n_2 that here subsequently decays to a stable end product n_3 :

$$n_1(target) \rightarrow n_2(radioactive) \rightarrow n_3(stable)$$

Considering the fundamental rate-of-change equation based on production minus losses, there is both creation and decay of the activation product (n_2) according to:

$$\frac{dn_2}{dt} = \sigma_{a,1} \, n_1(0) \phi - \lambda_2 \, n_2(t) \tag{1}$$

An assumption is made that the number of target nuclei, n_1 , remains constant and that there are few (negligible) neutrons absorbed by the n_2 or n_3 nuclei. Laplace transforms provide a straightforward solution method, especially since there are zero initial conditions (*i.e.*, there are no n_2 or n_3 atoms to begin with):

$$s n_2(s) - n_2(0) = \frac{\sigma_{a,1} n_1(0) \phi}{s} - \lambda_2 n_2(s)$$

$$n_2(s) = \frac{\sigma_{a,1} n_1(0) \phi}{s (s + \lambda_2)}$$
(2)

Inverse Laplace transforming gives

$$n_2(t) = \frac{\sigma_{a,1} \, n_1(0) \, \phi}{\lambda_2} \left(1 - e^{-\lambda_2 t} \right) \tag{3}$$

The activity of the activation product, n_2 , is

$$A_2(t) \equiv \lambda_2 \, n_2(t) = \sigma_{a1} \, n_1(0) \, \phi (1 - e^{-\lambda_2 t}) \tag{4}$$

where

 ϕ = the particle (neutron) flux,

 $\sigma_{a,1}$ = the microscopic capture (absorption) cross section of the target nuclide,

 λ_2 = the decay constant of the activation product, and

t = the time since starting the irradiation.

The buildup of a stable decay product, n_3 , may be described by:

$$\frac{dn_3}{dt} = \lambda_2 \ n_2(t) \tag{5}$$

Laplace transforming and substituting the expression for $n_2(s)$ from Equation (2) yields

$$s n_3(s) - n_3(0) = \lambda_2 n_2(s)$$

$$n_3(s) = \frac{\lambda_2 n_2(s)}{s} = \sigma_{a,1} n_1(0) \phi \left[\frac{1}{s^2} - \frac{1}{s(s + \lambda_2)} \right]$$
(6)

The time domain solution is then

$$n_3(t) = \sigma_{a,1} \, n_1(0) \, \phi \left[t - \frac{1}{\lambda_2} \left(1 - e^{-\lambda_2 t} \right) \right] \tag{7}$$

EEE460-Handout K.E. Holbert

The buildup of the radioactive activation product, $n_2(t)$, during irradiation from t=0 to t=6, where the time scale is normalized to the number of half-lives of n_2 . The number of activated nuclei (radionuclides) present at a particular time instant asymptotically approaches $\sigma_{a,1} n_1(0) \phi / \lambda_2$. After irradiation ceases, decay of n_2 continues.

After Irradiation $(t_1 \le t)$:

Once the irradiation is stopped, there is no longer production of n_2 rather only decay of the activation product n_2 and buildup of the decay product n_3 :

$$\frac{dn_2}{dt} = -\lambda_2 \ n_2(t)$$

$$\frac{dn_3}{dt} = \lambda_2 \ n_2(t)$$
(8)

Again, Laplace transforms provide a natural solution, however, the initial condition are <u>non-zero</u>. The "new" initial conditions are determined from the total irradiation time, $t_{\rm I}$, (that is, $n_2(t_{\rm I})$ and $n_3(t_{\rm I})$ are computed from Equations (3) and (7), respectively).

$$s n_2(s) - n_2(t_I) = -\lambda_2 n_2(s)$$

$$n_2(s) = \frac{n_2(t_I)}{(s + \lambda_2)}$$
(9)

To retain the same time base, that is keeping t = 0 at the same reference point for both the irradiation and decay periods, it is necessary to make a slight adjustment during the inverse Laplace transform operation

$$n_{2}(t') = n_{2}(t_{I}) e^{-\lambda_{2}t'}$$

$$n_{2}(t) = \left[\frac{\sigma_{a,1} n_{1}(0)\phi}{\lambda_{2}} \left(1 - e^{-\lambda_{2}t_{I}}\right)\right] e^{-\lambda_{2}(t - t_{I})}$$
(10)

Likewise, the buildup of n_3 may be determined via

$$s n_3(s) - n_3(t_I) = \lambda_2 n_2(s)$$

$$n_3(s) = \frac{n_3(t_I)}{s} + \frac{\lambda_2 n_2(s)}{s}$$

$$= \frac{n_3(t_I)}{s} + \frac{\lambda_2 n_2(t_I)}{s(s + \lambda_2)}$$
(11)

Inverse Laplace transforming similarly gives the buildup of n_3

$$n_3(t) = n_3(t_I) + n_2(t_I) \left[1 - e^{-\lambda_2(t - t_I)} \right]$$
(12)

Note how the simple relations in Equations (10) and (12) make physical sense.

EEE460-Handout K.E. Holbert