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TRANSMUTATION 
 
 
During Irradiation (t < tI): 
A “target” with nuclei n1 is placed in a reactor or similar facility and is exposed to a constant flux of 
particles, such as neutrons.  Some of the target nuclides, n1, absorb a neutron to form a radionuclide n2 that 
here subsequently decays to a stable end product n3: 

n1 (target)  →  n2 (radioactive)  →  n3 (stable) 

Considering the fundamental rate-of-change equation based on production minus losses, there is both 
creation and decay of the activation product (n2) according to: 
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An assumption is made that the number of target nuclei, n1, remains constant and that there are few 
(negligible) neutrons absorbed by the n2 or n3 nuclei.  Laplace transforms provide a straightforward solution 
method, especially since there are zero initial conditions (i.e., there are no n2 or n3 atoms to begin with): 
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Inverse Laplace transforming gives 
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The activity of the activation product, n2, is 
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 where 
 φ = the particle (neutron) flux, 
 σa,1 = the microscopic capture (absorption) cross section of the target nuclide, 
 λ2 = the decay constant of the activation product, and 
 t = the time since starting the irradiation. 
 
The buildup of a stable decay product, n3, may be described by: 
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Laplace transforming and substituting the expression for n2(s) from Equation (2) yields 
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The time domain solution is then 
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The buildup of the 
radioactive activation 
product, n2(t), during 
irradiation from t=0 to t=6, 
where the time scale is 
normalized to the number 
of half-lives of n2.  The 
number of activated nuclei 
(radionuclides) present at a 
particular time instant 
asymptotically approaches 

211, /)0( λφσ na .  After 
irradiation ceases, decay of 
n2 continues. 
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After Irradiation (tI < t): 
Once the irradiation is stopped, there is no longer production of n2 rather only decay of the activation 
product n2 and buildup of the decay product n3: 
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Again, Laplace transforms provide a natural solution, however, the initial condition are non-zero.  The 
"new" initial conditions are determined from the total irradiation time, tI, (that is, n2(tI) and n3(tI) are 
computed from Equations (3) and (7), respectively). 
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To retain the same time base, that is keeping t = 0 at the same reference point for both the irradiation and 
decay periods, it is necessary to make a slight adjustment during the inverse Laplace transform operation 
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Likewise, the buildup of n3 may be determined via 
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Inverse Laplace transforming similarly gives the buildup of n3 
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Note how the simple relations in Equations (10) and (12) make physical sense. 


